Champak Chatterjee

Reversible enzymatic modifications of protein side-chains, also known as post-translational modifications or PTMs, confer complexity to biological systems by dynamically regulating the location, structure, and activity of proteomes. Elucidating the mechanistic contributions of post-translationally modified proteins to key cellular processes, such as gene transcription, is critical for understanding normal human development and to identify new therapeutic targets in diseases arising from the misregulation of PTMs. To accomplish these goals, we apply a seamless combination of chemical and molecular biological tools to investigate uniformly modified proteins in well-defined biophysical and biochemical systems. Read More

Lara Gamble

Dr. Gamble's research focuses on surface modification and characterization of model biomedical systems including fundamental research towards the preparation and characterization of DNA and protein microarrays. She is also involved in the development of new techniques that will enable improved analysis of the biomolecule-surface interface and improved chemical imaging of biologically relevant samples. Read More

Xiaohu Gao

Our group designs and develops functional materials and structures on the nanometer scale. Examples include multicolor quantum dots for fluorescence imaging, magnetic nanoparticles for MRI, metallic nanoparticles for ultrasensitive detection, and polymeric nanoparticles for targeted drug delivery. Most recently, we are developing multimodality imaging probes by combining different materials into discrete nanostructures in order to utilize the strength of each individual component. Read More

Hao Yuan Kueh

Our lab studies how immune cells make fate decisions, both as they develop from stem cells, and as they respond to antigens.  We combine live cell imaging, mathematical modeling and other modern approaches to dissect the molecular circuitry underlying fate control at the single cell level.  Our work will lay foundations for engineering immune cells to treat cancer and other life-threatening diseases. Read More

Raymond Monnat

The Monnat Lab is interested in the molecular basis of human disease, and how synthetic and engineering approaches can be used to understand, treat or prevent disease. Our specific research projects have focused on cancer biology and therapy, and on building genome engineering tools to enable cellular and synthetic biology disease applications. Read More

Jennifer Nemhauser

The Nemhauser Lab is interested in understanding how signaling pathways fit into the broader contexts of time, location within an organism, and interaction with other signals. Specifically, we use a model plant called Arabidopsis thaliana to dissect the network by which seedlings change their form to take best advantage of their light environment. This process is called photomorphogenesis. Work from many groups over the past twenty years has produced a long list of factors linked to photoreceptors, the proteins that directly sense light and begin the process of photomorphogenesis. Read More

Rene Overney

Research in Overney’s Lab focuses on obtaining a fundamental understanding of material functionalities involving nano-confined complex molecular systems. We are particularly interested in i) identifying basic internal and external constraints that are responsible for unique material and transport properties, and ii) applying knowledge of molecular- and nano-constraints to material engineering in a rational fashion, with focus on the molecular building blocks, their subunits, and their temporal and spatial mobilities. Read More

Lilo Pozzo

Our research focuses on understanding and controlling self-assembly processes in dispersed colloidal, polymeric and nanoparticle systems. This fundamental knowledge allows for manipulation of material properties for applications in solar energy, nanomedicine, separations and advanced coatings amongst others. We also develop in-situ neutron and x-ray scattering techniques to formulate structure-property relationships under realistic processing and use conditions. Read More

Suzie Pun

Research in the Pun Group focuses on advancing macromolecule drug delivery technology by developing materials that overcome transport limitations in tissues and within cells. We are integrating techniques from engineering, chemistry, and cell biology to achieve this goal. Read More