Nick launched the Riley Research Group at the University of Washington in September 2023. His independent program leverages creative technology development to study fundamental roles of glycosylation in cell surface biology, with a focus on glycocode regulation and dysregulation in cancer progression and metastasis. The Riley Research Group integrates MS-based multi-omics, chemical/molecular biology, and bioinformatics in a systems-level approach to glycobiology to further our understanding of human health and disease and to advance therapeutic glycoscience. Read More
The Cao Lab at the University of Washington is a dynamic and interdisciplinary research group that focuses on two exciting and innovative research directions: mucosal immunoengineering and microbiome pharmaceutics. We aim to develop innovative and translatable tools that can prevent and treat a host of immunological disorders, including allergies, inflammation, and autoimmune diseases, as well as infectious diseases. Currently, our lab is deeply engaged in developing therapeutics that modulate the immune system by specifically targeting the microbiome and its associated metabolites. Read More
Research in my laboratory focuses on the development of novel methods to answer fundamental questions in biology & medicine. Much of biology & medicine is technology limited in that leaps in knowledge follow closely on the heels of new discoveries and inventions in the physical and engineering sciences; consequently, interdisciplinary groups which bridge these different disciplines are playing increasingly important roles in biomedical research. My lab has developed partnerships with other investigators in the areas of biology, medicine, chemistry, physics, and engineering to design, fabricate, test, and utilize new tools for biomedical and clinical research. Read More
How does a protein’s sequence encode its fold and function? How do changes in sequence influence disease risk, prognosis and treatment? How do gene expression patterns combine with protein activity to define cellular processes like growth, migration and communication? The Fowler lab develops new ways to probe the relationship between genotype and phenotype, enabling us to better answer these questions. To accomplish this goal, we draw on our expertise in genomics, protein science, technology development and computational approaches. Read More
My lab is interested in using the prostate as a tissue model to study the molecular and cellular mechanisms that regulate development, tissue homeostasis and carcinogenesis. Currently, there are two major research focuses in the lab. The first research focus is to characterize the prostate epithelial lineage hierarchy. We seek to investigate how individual prostate epithelial lineages are maintained in adults by prostate stem cells or progenitors, and to identify master regulators that control adult prostate homeostasis. The second focus of the lab is to investigate the molecular and cellular basis of aggressive prostate cancer. Read More
The Marchand Lab aims to utilize fundamental approaches in synthetic biology, chemical biology, biosynthesis, and biomolecular engineering for reprogramming life at the nucleic acid level. The goal is to extend the nucleotide building blocks available in living systems for biosynthesis, and to use newly expanded metabolism for producing nucleic acids with emergent, programmable function. Our group currently focuses on xenonucleic acids with nucleobases that basepair orthogonally to the canonical genetic code (i.e. ATGC+XYWZ). These xenonucleic acids are all synthetic in source. Read More
Our group is focused on molecular technology development for a wide array of applications, from genomics and proteomics to molecular computing and digital data storage using DNA. To do this, we integrate expertise in synthetic biology, biophysics, biochemistry, computer science, and engineering. Current areas of focus include nanopore sensing, single-molecule protein sequencing, CRISPR-Cas, wet-lab automation, machine learning for biological systems design, and cyber-bio security. Read More
Ray’s research bridges materials science and environmental engineering to create unique solutions to urban water supply sustainability. We design novel composite materials to: (1) selectively adsorb and/or degrade toxic, persistent contaminants, (2) remove contaminants in urban stormwater, and (3) recover value-added products from waste streams. We investigate interfacial reactions using surface chemistry techniques to better understand the structure-function relationships of our materials for their intended applications. Read More
Our lab studies the mitotic spindle, a molecular machine that organizes and separates duplicated chromosomes during cell division, thereby ensuring equal partitioning of the genetic material. To uncover how this machine operates, we are reconstituting spindle functions using pure components and applying new biophysical tools for manipulating and tracking individual molecules, such as laser trapping and ultrasensitive fluorescence microscopy. Read More
Professor Baker's research aims to predict the structures of naturally occurring biomolecules and interactions and to design new molecules with new and useful functions. Building on intial computational designs, Baker uses experiment to better understand the principles underlying catalysis and binding in order to design novel proteins and enzymes. Read More