News

Categories:

Category: Research

Carothers gray background
UW synthetic biologist James Carothers wins ARPA-E award to develop new CO2 bioconversion process

July 13, 2021

The funding will be used to develop scalable, cell-free platforms that enable the capture and conversion of carbon dioxide into industrial chemicals, providing manufacturers with a cheaper, more efficient and sustainable means of chemical production. [...]

Read More...

Alzheimers Disease concept, Brain degenerative diseases Parkinson
Alzheimer’s research gets a boost

April 6, 2021

Bioengineering startup AltPep advances technology for the early detection and treatment of Alzheimer’s and other amyloid diseases. [...]

Read More...

electron_transfer_atomic_motions_artwork_la_final-750x292-1
Role of solvent molecules in light-driven electron transfer revealed

March 12, 2021

In a study published in Nature Chemistry, a research team led by MolES faculty member Munira Khalil, professor and chair of chemistry at the UW, has captured the rapid motions of solvent molecules that impact light-driven electron transfer in a molecular complex for the first time. This information could help researchers learn how to control energy flow in molecules, potentially leading to more efficient clean energy sources. [...]

Read More...

Husky hydrogel
Researchers use lasers and molecular tethers to create perfectly patterned platforms for tissue engineering

January 18, 2021

MolES faculty member Cole DeForest and colleagues have developed a technique to modify naturally occurring biological polymers with protein-based biochemical messages that affect cell behavior. Their approach, published in the Proceedings of the National Academy of Sciences, uses a near-infrared laser to trigger chemical adhesion of protein messages to a scaffold made from biological polymers such as collagen, a connective tissue found throughout our bodies. [...]

Read More...

2021_COE covid-tests-bioe-c4
A culture of collaboration

November 17, 2020

MolES faculty members Barry Lutz and Paul Yager pivoted their diagnostics research to support the need for COVID-19 testing. [...]

Read More...

cells-noNPs-NPs
Break it up: Polymer derived from material in shrimp’s shells could deliver anti-cancer drugs to tumor sites

November 3, 2020

A University of Washington team led by Miqin Zhang, a MolES faculty member and professor of materials science and engineering, has developed a nanoparticle-based drug delivery system that can ferry a potent anti-cancer drug through the bloodstream safely. Their nanoparticle is derived from chitin, a natural and organic polymer that, among other things, makes up the outer shells of shrimp. [...]

Read More...

pill-network-650px
How to build a network of pharmaceutical biofactories

October 15, 2020

Advances in synthetic biology and biomaterials are opening up exciting prospects for the distributed manufacturing of drugs, food products, and other commodities. [...]

Read More...

tDBG-Schematic-750x567
All together now: Experiments with twisted 2D materials catch electrons behaving collectively

October 7, 2020

In a paper published Sept. 14 in the journal Nature Physics, a team led by the University of Washington reports that carefully constructed stacks of graphene — a 2D form of carbon — can exhibit highly correlated electron properties. The team also found evidence that this type of collective behavior likely relates to the emergence of exotic magnetic states. [...]

Read More...

hydrogel_channels_cropped_thermodynamic_heating__0
The heat is on for building 3D artificial organ tissues

October 1, 2020

Bioengineering professor Kelly Stevens and colleagues created a new tool to control gene expression in 3D-printed genetically-engineering cells using heat. [...]

Read More...

Fu_kai-mei
UW receives NSF funds for investment in an interdisciplinary quantum future

September 1, 2020

The National Science Foundation has awarded $3 million to establish a NSF Research Traineeship at the University of Washington for graduate students in quantum information science and technology. The new traineeship — known as Accelerating Quantum-Enabled Technologies, or AQET — will make the UW one of just “a handful” of universities with a formal, interdisciplinary QIST curriculum. MolES faculty member Kai-Mei Fu will serve as the director of AQET. [...]

Read More...

Carothers-Zalatan twitter image
MolES faculty receive NSF EAGER award to develop new SARS-CoV-2 antibody test

July 30, 2020

James Carothers, Dan Evans Career Development Associate Professor of Chemical Engineering, and Jesse Zalatan, Assistant Professor of Chemistry, have been awarded a National Science Foundation EAGER grant to develop a new type of SARS-Cov-2 antibody test. Carothers and Zalatan will receive $300,000 over a one-year period from funds made available through the Coronavirus Aid, Relief, and Economic Security (CARES) Act. [...]

Read More...

rapid-covid19_NEW
Developing rapid COVID-19 tests for the home and clinic

June 23, 2020

At the onset of the #COVID-19 pandemic, MolES faculty member Paul Yager, a UW professor of bioengineering, knew a rapid and accurate test would be needed to screen patients for the new coronavirus. He immediately set to work adapting his point-of-care testing research to developing an at-home test for the new virus. Read more about how the Yager lab is developing easy, fast and accurate COVID-19 tests to be used at home and in the clinic. [...]

Read More...

meeting-the-need-covid19_NEW
Meeting the need for COVID-19 test kits: Pivoting from Seattle Flu Study and developing new rapid tests

June 23, 2020

MolES faculty member and bioengineering professor Barry Lutz, in partnership with Dr. Matthew Thompson, a UW professor of family medicine and global health, is pioneering at home test kits for the Seattle Coronavirus Assessment Network to respond to the COVID-19 pandemic. Read more about how the Lutz lab is developing new ways to rapidly test for COVID-19. [...]

Read More...

covid-19-2_NEW
COVID-19 Research at MolES

June 3, 2020

In response to the COVID-19 pandemic, MolES faculty have pivoted their research to address the novel coronavirus, SARS-CoV-2. They are leveraging molecular engineering approaches and tools to develop improved diagnostics, targeted treatment strategies, and a better understanding of the virus. We highlight a few of these projects here. [...]

Read More...

pacific_oysters_new
Pacific oysters in the Salish Sea may not contain as many microplastics as previously thought

May 1, 2020

Using advanced instrumentation in the Molecular Analysis Facility, researchers in the lab of MolES faculty member and materials science & engineering professor Christine Luscombe have discovered that Salish Sea oysters may not contain as many microplastic contaminants as previously thought. [...]

Read More...

zalatan_jesse
Researchers identify rules for effectively regulating gene expression in bacteria

April 16, 2020

Jason Fontana, a molecular engineering Ph.D. student in the labs of chemical engineering professor James Carothers and chemistry professor Jesse Zalatan, has identified features of bacterial genes that impose strict requirements on CRISPR-Cas transcriptional activation tools. This work defines new strategies to effectively regulate gene expression in bacteria, bringing researchers closer to their goal of using bacteria to produce valuable biosynthetic products. Read this Q&A with Jesse Zalatan featured on the Science in Seattle blog. [...]

Read More...

Al-Nelson
New system outcompetes traditional biofactories with on-demand, remote chemical production | The Daily

February 27, 2020

A team was led by Dr. Alshakim Nelson, an assistant professor of chemistry at the UW, and Dr. Hal Alper, a professor of chemical engineering at the University of Texas, developed a new method that combines the bioactivity of microbes and a 3D-printed, synthetic hydrogel — a water-based gel structure — to create desired chemical compounds. The products can vary from pharmaceuticals to nutraceuticals, alluding to the vast potential for this new finding. [...]

Read More...

hydrogel-lattice_NEW
First-of-its-kind hydrogel platform enables on-demand production of medicines and chemicals

February 4, 2020

Researchers in the lab of MolES faculty member and professor of chemistry Al Nelson – along with collaborators at the University of Texas – unveiled a new way to produce medicines and chemicals and preserve them using portable “biofactories” that are embedded in water-based gels known as hydrogels. The approach could help people in remote villages or on military missions, where the absence of pharmacies, doctor’s offices or even basic refrigeration makes it hard to access critical medicines and other small-molecule compounds. [...]

Read More...

lillipop_NEW
Team uses golden ‘lollipop’ to observe elusive interference effect at the nanoscale

November 7, 2019

A team led by MolES faculty member David Masiello and scientists from the University of Notre Dame used recent advances in electron microscopy to observe Fano interferences — a form of quantum-mechanical interference by electrons — directly in a pair of metallic nanoparticles. [...]

Read More...

tractor-beam_NEW
Light-based ‘tractor beam’ assembles materials at the nanoscale

November 4, 2019

A team led by MolES faculty member Peter Pauzauskie, a professor of materials science and engineering, has developed a method that could make reproducible manufacturing at the nanoscale possible. The team adapted a light-based technology employed widely in biology — known as optical traps or optical tweezers — to operate in a water-free liquid environment of carbon-rich organic solvents, thereby enabling new potential applications. [...]

Read More...