Gizem is a doctoral student in the laboratory of Gaurav Bhardwaj in Medicinal Chemistry and interested in de novo peptide design to inhibit the activity of macromolecules. She is currently designing cyclic peptides against protein targets including extracellular ones such as SARS-CoV-2 main protease because cyclic peptides have some advantages over linear peptides which are high stability, high specificity and their ability to bind protein surfaces that cannot generally be drugged. She is primarily interested in computationally achieving the best binders that reach global energy minima by analytical calculations and also to test & approve their binding by experimental analyses. Read More
Neurodegenerative diseases like Alzheimer’s and ALS are characterized by the aggregation of disordered proteins. Recent discoveries suggest that these same disordered proteins also demonstrate phase separation behavior, in which disordered proteins prefer each other to mixing evenly in aqueous solution. Working with Professors Abhi Nath and Mike Guttman in the department of Medicinal Chemistry, Ellie seeks to understand the dynamics and structural intricacies that govern aggregation and phase separation. This knowledge may enable the use of small molecule drugs to influence disordered proteins on the pathways to aggregation or phase separation. Read More
The Nath lab is interested in characterizing and controlling functionally relevant protein dynamics. We use a broad set of techniques from biophysics and pharmacology, including single-molecule fluorescence and molecular simulations, to better understand and engineer the behavior of enzymes and transporters involved in drug metabolism; emerging protein therapeutics; and aggregation-prone intrinsically disordered proteins implicated in major neurodegenerative disorders. Read More
Our research focuses on computational and experimental tools for the high-throughput design and validation of peptide-based therapeutics. Current projects in our lab aim to design bioactive peptides against clinically-relevant molecular targets in drug resistance, chronic pain, and neurodegenerative disorders. We are also developing a general rulebook of design principles for peptides with enhanced membrane-permeability, oral bioavailability, and blood-brain barrier traversal. Read More