First-of-its-kind hydrogel platform enables on-demand production of medicines and chemicals

a water-based gel that is used in molecular biology research
Researchers in the lab of MolES faculty member and professor of chemistry Al Nelson along with collaborators at the University of Texas unveiled a new way to produce medicines and chemicals and preserve them using portable "biofactories" that are embedded in water-based gels known as hydrogels. The approach could help people in remote villages or on military missions, where the absence of pharmacies, doctor's offices or even basic refrigeration makes it hard to access critical medicines and other small-molecule compounds.

PECASE Honoree Elizabeth Nance highlights the importance of collaboration in nanotechnology

Man and woman hold vial and look at it
Elizabeth Nance, an assistant professor of chemical engineering at the University of Washington in Seattle and a recent recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE), focuses her research on understanding the barriers in the brain and other cell- and tissue-based barriers in the body to see how nanoparticles interact with them.

Light-based "˜tractor beam' assembles materials at the nanoscale

A team led by MolES faculty member Peter Pauzauskie, a professor of materials science and engineering, has developed a method that could make reproducible manufacturing at the nanoscale possible. The team adapted a light-based technology employed widely in biology "” known as optical traps or optical tweezers "” to operate in a water-free liquid environment of carbon-rich organic solvents, thereby enabling new potential applications.

New technique lets researchers map strain in next-gen solar cells

A team led by David Ginger, professor of chemistry and MolES faculty member, has developed a way to map strain in lead halide perovskite solar cells. Their approach shows that misorientation between microscopic perovskite crystals is the primary contributor to the buildup of strain within the solar cell, which creates small-scale defects in the grain structure, interrupts the transport of electrons within the solar cell, and ultimately leads to heat loss through a process known as non-radiative recombination.

New metasurface design can control optical fields in three dimensions

A team led by MolES faculty member Arka Majumdar, an assistant professor of electrical and computer engineering and physics, has designed and tested a 3D-printed metamaterial that can manipulate light with nanoscale precision. As they report in a paper published October 4 in the journal Science Advances, their designed optical element focuses light to discrete points in a 3D helical pattern.