Researchers use lasers and molecular tethers to create perfectly patterned platforms for tissue engineering

Image of a biological scaffold for tissue engineering that has had proteins tethered to it in a specific pattern, in this case the University of Washington's former logo
MolES faculty member Cole DeForest and colleagues have developed a technique to modify naturally occurring biological polymers with protein-based biochemical messages that affect cell behavior. Their approach, published in the Proceedings of the National Academy of Sciences, uses a near-infrared laser to trigger chemical adhesion of protein messages to a scaffold made from biological polymers such as collagen, a connective tissue found throughout our bodies.

Break it up: Polymer derived from material in shrimp's shells could deliver anti-cancer drugs to tumor sites

Images of mouse mammary cancer cells under a microscope.
A University of Washington team led by Miqin Zhang, a MolES faculty member and professor of materials science and engineering, has developed a nanoparticle-based drug delivery system that can ferry a potent anti-cancer drug through the bloodstream safely. Their nanoparticle is derived from chitin, a natural and organic polymer that, among other things, makes up the outer shells of shrimp.

MolES faculty receive NSF EAGER award to develop new SARS-CoV-2 antibody test

James Carothers and Jesse Zalatan
James Carothers, Dan Evans Career Development Associate Professor of Chemical Engineering, and Jesse Zalatan, Assistant Professor of Chemistry, have been awarded a National Science Foundation EAGER grant to develop a new type of SARS-Cov-2 antibody test. Carothers and Zalatan will receive $300,000 over a one-year period from funds made available through the Coronavirus Aid, Relief, and Economic Security (CARES) Act.

Developing rapid COVID-19 tests for the home and clinic

SARS-CoV-2 blue and yellow
At the onset of the #COVID-19 pandemic, MolES faculty member Paul Yager, a UW professor of bioengineering, knew a rapid and accurate test would be needed to screen patients for the new coronavirus. He immediately set to work adapting his point-of-care testing research to developing an at-home test for the new virus. Read more about how the Yager lab is developing easy, fast and accurate COVID-19 tests to be used at home and in the clinic.

Meeting the need for COVID-19 test kits: Pivoting from Seattle Flu Study and developing new rapid tests

UW bioengineering research scientists Enos Kline
MolES faculty member and bioengineering professor Barry Lutz, in partnership with Dr. Matthew Thompson, a UW professor of family medicine and global health, is pioneering at home test kits for the Seattle Coronavirus Assessment Network to respond to the COVID-19 pandemic. Read more about how the Lutz lab is developing new ways to rapidly test for COVID-19.

COVID-19 Research at MolES

In response to the COVID-19 pandemic, MolES faculty have pivoted their research to address the novel coronavirus, SARS-CoV-2. They are leveraging molecular engineering approaches and tools to develop improved diagnostics, targeted treatment strategies, and a better understanding of the virus. We highlight a few of these projects here.