News & Events
  • Hybrid optics bring color imaging using ultrathin metalenses into focus

    MolES Professor Arka Majumdar’s lab is pioneering new ultrathin metalenses for next-gen imagining technologies

    From UW Today: For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras. But today’s glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require lenses made of a new array of materials. In a paper published Feb. 9 in Science Advances, scientists at the University of Washington announced that they have successfully combined two different imaging methods — a type of lens designed for nanoscale interaction with lightwaves, along with robust computational processing — to create full-color images. The team’s ultrathin lens is part of a class of engineered objects known as metasurfaces. Metasurfaces are 2-D analogs of metamaterials, which are manufactured materials with physical and chemical properties not normally found in nature. A metasurface-based lens — or metalens — consists of flat microscopically patterned material surfaces designed to interact with lightwaves. To date, images taken with metalenses yield clear images — at best — for only small slices of the visual spectrum. But the UW team’s metalens — in conjunction with computational filtering — yields full-color images with very low levels of aberrations across the visual spectrum.
    Read the full story here.