Participating Faculty

There are over 80 faculty members from the participating departments in the program. Faculty may be contacted for mentoring, participating as committee members, or for rotations in their labs.

Professor, Electrical Engineering

Anant M.P. Anantram

Professor, Electrical Engineering | 206-221-5162

Our group develops methods in the theory and computational modeling of nanoscale devices, and applies them to emerging technologies. In particular, we are interested in emerging devices where quantum mechanics plays a fundamental role in determining device behavior. Such devices have the potential to impact the fields of low power electronics and bio/chemical sensing technologies. We use both methods developed by us and other groups to design and simulate nanodevices and explain experiments. Our current research involves charge transport in (i) emerging memory devices where atom movement is central to information storage, (ii) bio nanostructures (DNA and peptides), (iii) molecular nanostructures and (iv) solar cells.

Professor, Chemistry

Niels H. Andersen

Professor, Chemistry | 206.543.7099

Our research group focuses on both the fundamental thermodynamics and structural features associated with biorecognition phenomena and practical applications in drug and protein design. The primary biophysical tools employed are spectroscopic: NMR determinations of polypeptide structure and dynamics, IR- and fluorescence-monitored T-jump kinetics for folding pathways, CD studies of the melting of secondary and tertiary structure.

Associate Professor, Physiology and Biophysics

Charles Asbury

Associate Professor, Physiology and Biophysics | 206-543-7808

Our lab studies the mitotic spindle, a molecular machine that organizes and separates duplicated chromosomes during cell division, thereby ensuring equal partitioning of the genetic material. To uncover how this machine operates, we are reconstituting spindle functions using pure components and applying new biophysical tools for manipulating and tracking individual molecules, such as laser trapping and ultrasensitive fluorescence microscopy.

Professor, Medicinal Chemistry

William Atkins

Professor, Medicinal Chemistry | 206-685-0379

Our lab studies enzymes and proteins that participate in the detoxification of foreign chemicals, including therapeutic drugs. We are also studying therapeutic antibodies, other pharmaceutically important proteins, and several classes of nanoparticles to understand structure-function aspects of their tissue targeting, clearance, and in vitro stability.

Professor, Biochemistry

David Baker

Professor, Biochemistry | 206-543-1295

Professor Baker’s research aims to predict the structures of naturally occurring biomolecules and interactions and to design new molecules with new and useful functions. Building on intial computational designs, Baker uses experiment to better understand the principles underlying catalysis and binding in order to design novel proteins and enzymes.

Charles W.H. Matthaei Professor, Chemical Engineering

François Baneyx

Charles W.H. Matthaei Professor, Chemical Engineering | 206-685-3451

Our research aims to improve the expression and folding of heterologous proteins in Escherichia coli, develop innovative sensors and sensing strategies, and build proteins capable of controlling the nucleation, growth, crystallography, assembly and reconfiguration of hybrid organic-inorganic-synthetic materials at the nanoscale.

Professor, Chemical Engineering

John Berg

Professor, Chemical Engineering | 206-543-2029

Optimization of adhesion and mechanical properties in particle and fiber reinforced polymeric composites.
Particle charging in and electrical properties of colloidal dispersions in apolar media.
Rheology and rheology modification in dense colloidal dispersions.

Professor, Physics

George F. Bertsch

Professor, Physics | 206-543-2895


John M. Fluke Distinguished Chair of Engineering and Professor, Electrical Engineering and Bioengineering

Karl Böhringer

John M. Fluke Distinguished Chair of Engineering and Professor, Electrical Engineering and Bioengineering | 206-221-5177

In our lab, we work on many aspects of micro and nano electro mechanical systems (MEMS / NEMS). This research tends to be very interdisciplinary, and we have collaborations in biology, chemical engineering, bioengineering, computer science, and other departments. We have built, for example, self-assembling microstructures, biomedical implants, systems for docking of picosatellites, and walking microrobots.

Assistant Professor, Chemistry

Andrew Boydston

Assistant Professor, Chemistry | 206-616-8195

Our team’s research focuses on developing functional macromolecules capable of mechanochemical transduction. We explore fundamental aspects of how mechanical forces are distributed throughout polymeric and nanoscale structures, and how those forces can be harnessed to direct site-specific chemical reactivity. Using this knowledge, we engineer molecules to perform functions such as on-demand release of therapeutics or self-reinforcement of crosslinked networks.

Associate Professor, Materials Science & Engineering

Lucien Brush

Associate Professor, Materials Science & Engineering | (206) 543-7161

My research interests focus on modeling: (1.) ultra-thin film hydrodynamics at scales down to the nanometer range, including foams and films consisting of complex fluids and nanoparticles. Applications are liqhtweight materials for energy conservation, coatings and sensors. (2.) Nanoparticle nucleation and growth processes, quantum dot dynamics, nanostructural evolution, for device and biomedical applications.

Assistant Professor, Chemistry

Matt Bush

Assistant Professor, Chemistry | 206-543-7835

The Bush Lab works at the interface of analytical and biophysical sciences. We develop mass spectrometry and ion mobility spectrometry technologies that provide novel insights into structures and assembly of biomolecular machines and biotherapeutics, and apply these technologies to targets that are heterogeneous, dynamic, and interact with complex chemical matrixes.

Professor, Chemistry

Charles T. Campbell

Professor, Chemistry | 206-616-6085

Improving catalysts could minimize the use of fossil fuels, thus helping solve the energy crisis while decreasing greenhouse gases. Our group tries to clarify why catalyst modifiers act to promote catalytic activity or selectivity, and how nanoscale features of the catalyst surface can tuned to make better catalysts. In solar cells and LEDs, charge injection and extraction occurs at the interface between a metal or other conductor and one of the semiconducting materials (inorganic materials in most current commercial devices, but hopefully cheaper-to-make polymer films in the future). We also study the energetics and electronic properties of these interfaces.

Professor, Environmental and Occupational Health Sciences

Gerard (Jerry) Cangelosi

Professor, Environmental and Occupational Health Sciences | 206-543-2005

My laboratory develops and uses novel strategies for detecting microbial pathogens in clinical and environmental samples, and for assessing human exposure to these pathogens. In addition to specific protein and nucleic acid detection platforms, we have developed a new class of affinity reagents, i.e. antibody-like “probes” that bind specifically to pathogen molecules in samples. These technologies are being applied to diverse problems including tuberculosis, food- and waterborne-disease, hospital-acquired infections, and chronic infectious disease.

Boeing-Steiner Professor, Materials Science & Engineering

Guozhong Cao

Boeing-Steiner Professor, Materials Science & Engineering | 206-616-9084

Our research is focused on processing and characterization of nanostructured materials, and their energy related application like dye sensitized solar cell, organic-inorganic hybrid solar cell, lithium battery, supercapacitor and hydrogen storage. Our processing techniques include sol-gel processing, hydrothermal growth, electrochemical and electrophoretic deposition, and self-assembly. The research emphasis is to achieve novel structure and properties of energy related nanostructured materials through processing and composition designing.

Asistant Professor, Chemical Engineering

James Carothers

Asistant Professor, Chemical Engineering | 206-221-4902

Our goal is to develop design platforms for engineering complex genetic control systems for fundamental and applied synthetic biology. In our work, we combine computational modeling, in vitro selection and genetic engineering to construct RNA-based systems that can process cellular information and program the expression levels of large numbers of genes. Our aim is to enable both better understanding of fundamental biological processes and applications to meet demands for renewable chemicals and new therapies.

Professor, Bioengineering and Chemical Engineering; Director, Molecular Analysis Facility

David Castner

Professor, Bioengineering and Chemical Engineering; Director, Molecular Analysis Facility | 206-543-8094


Our research is directed at obtaining detailed information about the surface composition and structure of biomaterials and the interaction of biomolecules with those biomaterials. Recent advances have made it possible to control chemistry on a local scale undreamed of only a few years ago. The dimensions of the lateral chemical variations are diminishing, the complexity of the molecules being introduced at the surface is increasing, and the manipulations of the surface moieties become ever more sophisticated. These advances offer great challenges and opportunities for biomedical surface analysis.

Professor, Medicinal Chemistry

Carlos Catalano

Professor, Medicinal Chemistry | 206-685-3252

Research in the Catalano lab focuses on molecular mechanisms of virus assembly in the double-stranded DNA viruses. We couple detailed enzyme kinetic analyses with biophysical and structural interrogation of the molecular motor that “packages” the viral genome into a capsid shell. Maturation of the nucleoprotein particle into an infectious virus is examined in defined reaction mixtures. The lambda capsid system is further harnessed for the construction of “designer” nanoparticles for use as therapeutic and diagnostic agents.

Assistant Professor, Chemistry

Champak Chatterjee

Assistant Professor, Chemistry | 206-543-2349

Protein engineering using a combination of synthetic protein chemistry and molecular biology. We are generally interested in developing novel chemical approaches to site-selectively modify proteins in order to understand their regulation by reversible post-translational modifications. We are currently working in two areas, interrogating mechanisms of gene regulation by histone modifications and studying protein degradation pathways in tuberculosis. We also collaborate with several groups on campus to study biomedically relevant proteins.

Professor, Chemistry

Daniel T. Chiu

Professor, Chemistry | 206 543-1655

Our research is focused on developing new methods for probing complex biological processes at the single-cell and single-molecule level, and on applying these new techniques for addressing pressing biological problems. Please visit our website for more details.

Associate Professor, Mechanical Engineering

Jae-Hyun Chung

Associate Professor, Mechanical Engineering | 206-543-4355

The main focus of our group is in nanoengineering for low cost, rapid diagnosis of diseases. The research fields cover from the discovery of fundamental sciences for a tip enrichment method using an electric field to the development of a biomedical device for low cost, rapid diagnosis of diseases. We have developed the tip sensor technology that enriches and detects molecules on a nanoscale tip. The innovation of this technology is in the superior enrichment mechanism on the basis of an electric field, chemical binding affinity, and capillary action. The unusual enrichment performance using a nanotip enables high throughput, low cost diagnosis of diseases. This innovative technology has been developed for low-cost screening of tuberculosis and highly sensitive detection of protein and other biomarkers.

Professor, Physics

David Cobden

Professor, Physics | (206)-543-2686


Professor, Bioengineering

Valerie Daggett

Professor, Bioengineering | (206) 685-7420

My laboratory is using computational and experimental methods to design diagnostic and therapeutic agents to target amyloid diseases, which are reaching epidemic proportions as human lifespan increases.

Emeritus Professor and B. Seymour Rabinovitch Endowed Chair, Chemistry Emeritus<br />George B. Kauffman Professor, Electrical Engineering

Larry Dalton

Emeritus Professor and B. Seymour Rabinovitch Endowed Chair, Chemistry Emeritus
George B. Kauffman Professor, Electrical Engineering | (206) 543-1686


E. James Davis

Professor Emeritus, Chemical Engineering | 206 543-0298


Assistant Professor, Chemical Engineering

Cole DeForest

Assistant Professor, Chemical Engineering | 206 543-5961

Our team seeks to integrate the governing principles of rational design with fundamental concepts from material science, synthetic chemistry, and stem cell biology to conceptualize, create, and exploit next-generation materials to address a variety of health-related problems.  We are currently interested in the development of user-programmable biomaterials for assaying dynamic stem cell fate and tissue engineering applications, controlled therapeutic delivery to combat disease, and new tools for enhanced proteomic studies.  Our work relies heavily on the utilization of cytocompatible bioorthogonal chemistries, several of which can be initiated with light, to control material properties on the molecular level.

Professor, Mechanical Engineering

Santosh Devasia

Professor, Mechanical Engineering | 206 685-3401

Applied research has focused on the use of inversion-based approaches to solve challenges in nano (and sub-nano) scale precision positioning needed in scanning probe microscopes such as the atomic force microscope (AFM) and the scanning tunneling microscope (STM). It is noted that the AFM and STM are key enabling tools in the nano area; therefore the current work aimed at increasing their throughput will have a significant impact on the real-time investigation and manipulation of nano-scale and sub-nano-scale phenomena. For example, the inability to precisely position an AFM probe (at high speed) over a cell surface has traditionally limited the ability to image time-varying dynamics of cellular processes. In particular, lack of precision positioning (due to movement-induced vibration) leads to excessive forces on the cell surface (as the probe digs into the cell) and causes sample damage. Therefore, current AFM imaging of cells is limited to low operating speeds. Our research group was the first to demonstrate (experimentally) that feedforward techniques can effectively compensate for movement-induced vibrations in Scanning Probe Microscopes. Thereby, we showed that feedforward inputs could be used to increase the operating speed of Scanning Probe Microscopes. See website for further information.

Professor, Chemistry<br />Adjunct Professor, Physics

Gary Drobny

Professor, Chemistry
Adjunct Professor, Physics | 206 685-2052


Professor, Electrical Engineering

Scott Dunham

Professor, Electrical Engineering | 206-543-2189

Professor Dunham’s MolES-related interests lie in modeling and simulation of chalcopyrite (CIGS and CZTS), silicon and polymer photovoltaics. Efforts within the Nanotechnology Modeling Laboratory are focused on obtaining basic understanding of nanofabrication processes and device operation and applying that knowledge to produce better models, simulators, and devices.

Associate Professor, Bioengineering

Albert Folch

Associate Professor, Bioengineering | 206-685-2257

We design and use microfluidic devices to better mimic the real microenvironment of nerve and cancer cells when we culture them outside of the organism. We are microfluidic!​​ ​Examples of questions that interest us are how neurons find their targets during development (axon guidance​), how they establish their connections (synaptogenesis​), and how we sense odors (olfaction​), among other projects. We also build microfluidic devices that allow us to personalize chemotherapy ​and devices to study cancer stem cells​​​. ​

Assistant Professor, Physics and Electrical Engineering

Kai-Me Fu

Assistant Professor, Physics and Electrical Engineering | 206 543-2787

In the Optical Spintronics and Sensing Lab we study the quantum properties of point defects in crystals. In high purity crystals, simple quantum systems exhibiting a high level of quantum coherence can be realized.

Research Associate Professor, Bioengineering; Associate Director, Molecular Analysis Facility

Lara Gamble

Research Associate Professor, Bioengineering; Associate Director, Molecular Analysis Facility | 206-616-4173

Dr. Gamble’s research focuses on surface modification and characterization of model biomedical systems including fundamental research towards the preparation and characterization of DNA and protein microarrays. She is also involved in the development of new techniques that will enable improved analysis of the biomolecule-surface interface and improved chemical imaging of biologically relevant samples.

Harry and Catherine Jaynne Boand Endowed Professor of Chemistry

Daniel R. Gamelin

Harry and Catherine Jaynne Boand Endowed Professor of Chemistry | 206-685-0901

Professor Gamelin’s research targets the development and physical characterization of new functional inorganic materials, with particular focus on semiconductor nanostructures and thin films for photophysics, spin-photonics, and solar energy conversion.

Associate Professor, Bioengineering

Xiaohu Gao

Associate Professor, Bioengineering | 206-543-6126

Our group designs and develops functional materials and structures on the nanometer scale. Examples include multicolor quantum dots for fluorescence imaging, magnetic nanoparticles for MRI, metallic nanoparticles for ultrasensitive detection, and polymeric nanoparticles for targeted drug delivery. Most recently, we are developing multimodality imaging probes by combining different materials into discrete nanostructures in order to utilize the strength of each individual component.

Professor and Lawton Distinguished Scholar in Chemistry

David Ginger

Professor and Lawton Distinguished Scholar in Chemistry | 206-685-0901

The Ginger Research Group pioneers techniques such as time-resolved electrostatic force microscopy (trEFM) and photoconductive atomic force microscopy (pcAFM) to study nanostructured solar cells, energy efficient light-emitting diodes, and biosensors.

Emeritus Professor of Biochemistry - Investigator, HHMI

John A. Glomset

Emeritus Professor of Biochemistry - Investigator, HHMI

Research in Dr. Glomset’s group was focused on the structure and function of prenylated proteins and on the structure and biogenesis of animal cell membranes. Prenylated proteins were studied in collaboration with Mike Gelb, Chemistry, with special reference to low molecular weight GTP-binding proteins. The team searched for receptors that might mediate the binding of these proteins to specific intracellular membranes. Research on structure and biogenesis of cell membranes was designed to identify mechanisms that might promote the formation of specific phospholipid domains. One of these mechanisms appears to involve metabolic pathway that forms arachidonic acid-containing phospholipids including phosphatidylinositol. The lab investigated the precise intracellular distribution of the enzymes that contribute to this pathway.

Associate Professor, Biochemistry

Tamir Gonen

Associate Professor, Biochemistry |


Associate Professor, Physiology and Biophysics

Sharona Gordon

Associate Professor, Physiology and Biophysics | 206-616-4861

We aim to understand the molecular interactions between membrane lipids and membrane proteins. Using ion channels regulated by signaling lipids, we study how lipid binding alters the structure and function of channels.

Professor, Physics

Jens Gundlach

Professor, Physics | 206 543-4080


Rehnberg Chair Professor, Chemical Engineering

Hugh Hillhouse

Rehnberg Chair Professor, Chemical Engineering | 206-685-5257

Professor Hillhouse’s research is focused on the molecular science and engineering of clean energy conversion devices. In the area of solar cells, research topics in his group span the range from fundamental studies of semiconductor nanocrystal growth, colloidal and interfacial chemistry, nanostructure self-assembly, and semiconductor defect chemistry to the development of novel device architectures that will enable roll-to-roll printing of low-cost high-efficiency solar cells from molecular and nanocrystal-inks.

Campbell Professor of Materials Science & Engineering

Bruce Hinds

Campbell Professor of Materials Science & Engineering | (206) 685-9960

Research interests: Nano-scale functional devices with emphasis on active engineering membranes; fluidic and ionic transport studies in nano-pores; biomimetic nanoporous platforms with active gatekeepers; biochemical separations and programmed enzymatic membrane reactors; electro-catalytic flow reactor material systems.

UW Bioengineering emeritus faculty

Alan Hoffman

UW Bioengineering emeritus faculty | 425.881.3923

Dr. Hoffman's research interests are in magnetic fusion, particularly novel approaches that could either improve tokamaks, or provide more attractive confinement geometries, and in plasma propulsion.

Assistant Professor, Chemical Engineering

Vincent Holmberg

Assistant Professor, Chemical Engineering |

Our research group is focused on the large-scale production of nanocrystals and nanowires synthesized by scalable solution-based and supercritical fluid-based processes for energy conversion and energy storage applications, with an emphasis on nanomaterial growth, assembly, and in situ electron microscopy.

Chair & Boeing-Johnson Chair, Professor, Material Science & Engineering

Alex Jen

Chair & Boeing-Johnson Chair, Professor, Material Science & Engineering | 206-543-2626

1) Utilize molecular, polymeric, and biomacromolecular self-assembly to create ordered arrangement of organic and inorganic functional materials for photonics, opto-electronics, nanomedicine, and nanotechnology; 2) Employ the “molecular engineering” approach to tailor size, shape, sequence, and functionality of organic/hybrid functional materials and explore their applications.

Boeing-Martin Professor, Chemical Engineering and Chemistry

Samson Jenekhe

Boeing-Martin Professor, Chemical Engineering and Chemistry | 206-543-5525

Our research is focused on the molecular engineering of organic and polymeric materials for electronic, photonic, and energy applications. Our studies include synthesis, processing, self-assembly, structure-property relationships, photophysics, and charge transport of organic and polymer semiconductors. Ongoing device engineering applications include thin film transistors, photovoltaic cells, light emitting diodes, and photodetectors.

Professor, Chemical Engineering

Shaoyi Jiang

Professor, Chemical Engineering | 206-616-6509

Dr. Jiang’s research is on biointerfaces, biomaterials and biosensors, particularly the molecular understanding, design and development of zwitterionic functional materials. His work spans from molecular principles to product development for a wide range of applications such as medical devices, nanoparticles for diagnostics and drug delivery, antimicrobial coatings and marine coatings.

Research Associate Professor, Chemistry

Werner Kaminsky

Research Associate Professor, Chemistry | 206 543-7585

Crystals are in the center of research, a) for deriving molecular structures via single crystal X-ray diffraction, as part of service to the Chemistry Department, or for the purpose of calculations of optical properties, b) for the experimental study of crystal-optical features as in optical rotation, electro-optic responses or simple birefringence. Devices for measuring those features are custom build and, in case of birefringence, made available via licensing through the center for commercialization as software/blueprint combinations.

Professor, Chemistry<br />Adjunct Professor, Physics

Sarah L. Keller

Professor, Chemistry
Adjunct Professor, Physics | (206) 543-9613

Our lab investigates a wide range of questions concerning self-assembly, complex fluids, and soft matter systems, with a focus on lipid membrane biophysics and origins of life.  A recurring research theme in the group is how simple lipid mixtures within bilayer membranes give rise to complex phase behavior.

Assistant Professor, Chemistry

Munira Khalil

Assistant Professor, Chemistry | (206) 543-6682


Associate Director, Washington Nanofabrication Facility

Michael Khbeis

Associate Director, Washington Nanofabrication Facility | 206-543-5101

Research interests: Nanofabrication, characterization, and analysis. Energy harvesting systems development and materials.

Assistant Professor, Bioengineering

Deok-Ho Kim

Assistant Professor, Bioengineering | 206-616-1133

Through the use of multi-scale fabrication and integration tools, the Kim Laboratory focuses on the development and applications of biomimetic cell culture models and functional material-cell/tissue interfaces for elucidating cell biology, high-throughput drug screening, stem cell-based therapies, disease diagnostics, and medical device development. Our long-term goals are to better understand complex cellular behavior in response to microenvironmental cues in normal, aging and disease states, to gain new mechanistic and molecular insights into the control of cell-tissue structure and function, and to develop multiscale regenerative technologies for improving human health.

Associate Professor, Electrical Engineering

Eric Klavins

Associate Professor, Electrical Engineering | 206-616-1743

The Klavins Lab uses tools and methodologies from electrical engineering and computer science to develop detailed mechanisms that will inform the development of novel biological systems in the emerging field of synthetic biology. Topics of research interest include gene expression, auxin signal processing, synthetic multi-celled systems, and directed evolution.

Research Assistant Professor, Bioengineering

Patrick Koelsch

Research Assistant Professor, Bioengineering | 206-685-0452

The characterization and control of solid/liquid interfaces is at the forefront of a range of topics including regenerative medicine, biofouling, implant technology, and medical diagnostics. My primary research activities originate from the need to probe conformation and orientation of biomolecules (DNA, peptides, proteins, antibodies…) in contact to a solid surface with molecular-level resolution and under standard conditions in situ and in vitro. Current research interests include structure-function models for biomolecules and ordering phenomena within the extracellular matrix of adherent cells.

Professor, Environmental Engineering

Gregory Korshin

Professor, Environmental Engineering | (206) 543-2394

Campbell Chair Professor, Materials Science & Engineering

Kannan Krishnan

Campbell Chair Professor, Materials Science & Engineering | 206-543-2814

Materials Science with emphasis on nanoscale magnetic and transport (both charge and spin) phenomena in reduced dimensions, including their inter-coupling, to develop new paradigms for materials and devices in the context of novel information (storage, processing and logic) and energy technologies. And Bioengineering at the intersection of Magnetism, Materials and Medicine focusing on diagnostics, imaging and therapy, with appropriate translational research and commercialization activities.

Associate Professor, Mechanical Engineering

Jiangyu Li

Associate Professor, Mechanical Engineering | 206-543-6226

Our group is devoted to investigating the mechanics and physics of multifunctional materials and systems using tightly combined theoretical, numerical, and experimental investigations. We are interested in understanding the formation and evolution of microstructure in materials, clarifying their structure-property relationship, and optimizing microstructures and processing conditions for superior functional properties. We have been working on ferroelectrics, ferromagnetic materials, multiferroics, thermoelectrics, and electro-active polymers and composites, and we are currently focusing on global energy need through multifunctional materials design and synthesis. We are also probing electromechanical coupling in biological systems using piezoresponse force microscopy, with which we recently discovered biological ferroelectricity in soft tissues.

Associate Professor, Chemistry

Xiaosong Li

Associate Professor, Chemistry | (206) 685-1804

Our research focus on computational design and search for stable and controllable nano-sized semiconducting materials. Specifically, our research focuses on (i) the roles of defects, such as transition-metal and p-type dopants, in activating high Curie-temperature ferromagnetism; (ii) charge-transfer transitions for potential solar energy conversion; (iii) chemical and physical processes required to control magnetization using time-dependent quantum mechanical electrodynamics of charge-transfer delocalization, magnetic polaron formation, and magnetization reversal dynamics; and (iv) dopant-centered Auger-type processes and their role in the photodynamics of these doped nanocrystals.

Professor, Chemical Engineering and Microbiology

Mary Lidstrom

Professor, Chemical Engineering and Microbiology | 206-685-7641

Research in Dr. Lidstrom’s laboratory is focused on genome-scale analyses and manipulations of the metabolic network in methylotrophic bacteria, which are capable of growth on methane, methanol, and methylated amines. The long-term goal of this research is to develop environmentally sound and economically viable alternatives to current chemical production strategies, including conversion of natural gas to liquid fuels (Gas-To-Liquid technology).

Professor, Electrical Engineering

Lih Lin

Professor, Electrical Engineering | 206-543-2168

Our group studies and utilizes three-dimensionally confined nanoparticles such as colloidal quantum dots (QD) and plasmonic nanoparticles (NP) to build various nanophotonic devices. These materials harvest strong near-field interaction with light, and have opened new directions in nanophotonic devices and integration, as well as various applications in biomedicine and nanotechnology. We investigate light detection, harvesting, stimulation of cells and trapping using nanostructures. In addition, we also pursue device integration in micro-scale utilizing optical MEMS technology.

Associate Professor, Materials Science & Engineering

Christine Luscombe

Associate Professor, Materials Science & Engineering | 206-616-1220

Professor Luscombe’s research focuses on the design, synthesis, and applications of functional macromolecules. The group aims to develop new methods for making semiconducting polymers and to create new polymers with improved light absorption, charge transport, and stability.

Assistant Professor, Electrical Engineering and Physics

Arka Majumdar

Assistant Professor, Electrical Engineering and Physics | 206-616-5558

Our research is focused towards developing new nanophotonic devices where we can engineer light-matter interaction to enable few photon optoelectronics.

Professor, Electrical Engineering

Alexander Mamishev

Professor, Electrical Engineering | 206-221-5729

The goal of our research is to create new sensor and automation technology applications in such fields as non-destructive testing, power engineering, and manufacturing control using latest advances in signal processing, robotics, and communications. We are particularly interested in developing energy-efficient electrohydrodynamic air movers and using dielectric spectroscopy for non-destructive testing and forensics.

Assistant Professor, Chemistry

David Masiello

Assistant Professor, Chemistry | 206 543-5579

Professor Masiello's research focuses on the theoretical understanding of a variety of nanoscale light-matter interactions involving the excitation of surface plasmon resonances. Examples include electron energy-loss spectroscopy, cathodoluminescence, thermo-plasmonics, plasmon-enhanced catalysis, and plasmon-enhanced linear and nonlinear molecular optical phenomena.

Associate Professor, Biochemistry

Alexey Merz

Associate Professor, Biochemistry | 206 616-8308

The goal of our research is to understand how cells control the architecture of their intracellular organelle systems through the regulated self-assembly of lipid membranes and membrane-associated proteins. We employ both highly focused hypothesis tests and systems-level approaches that harness genetic, biochemical, and biophysical analytical techniques.

Professor, Genome Sciences and Pathology

Raymond Monnat

Professor, Genome Sciences and Pathology | 206-616-7392

The Monnat Lab is interested in the molecular basis of human disease, and how synthetic and engineering approaches can be used to understand, treat or prevent disease. Our specific research projects have focused on cancer biology and therapy, and on building genome engineering tools to enable cellular and synthetic biology disease applications.

Associate Professor, Microbiology

Joseph Mougous

Associate Professor, Microbiology | 206 685-7742


Assistant Professor, Medicinal Chemistry

Abhinav Nath

Assistant Professor, Medicinal Chemistry | 206 616-4586

The Nath lab is interested in characterizing and controlling functionally relevant protein dynamics. We use a broad set of techniques from biophysics and pharmacology, including single-molecule fluorescence and molecular simulations, to better understand and engineer the behavior of enzymes and transporters involved in drug metabolism; emerging protein therapeutics; and aggregation-prone intrinsically disordered proteins implicated in major neurodegenerative disorders.

Associate Professor, Biology

Jennifer Nemhauser

Associate Professor, Biology | 206-543-0753

The Nemhauser Lab is interested in understanding how signaling pathways fit into the broader contexts of time, location within an organism, and interaction with other signals. Specifically, we use a model plant called Arabidopsis thaliana to dissect the network by which seedlings change their form to take best advantage of their light environment. This process is called photomorphogenesis. Work from many groups over the past twenty years has produced a long list of factors linked to photoreceptors, the proteins that directly sense light and begin the process of photomorphogenesis. The goal of our research is to understand how these diverse proteins and small molecules create a robust and flexible network that shapes plant form.

Professor, Genome Sciences

Debbie Nickerson

Professor, Genome Sciences | 206 685-7387


Assistant Professor, Mechanical Engineering

Igor Novosselov

Assistant Professor, Mechanical Engineering | 206-753-8447

Our group studies the combustion synthesis of nanostructured material for application in energy and biomedical fields.
We focus on low-cost production and self assembly of carbon and metal oxides aerosol gels.

Professor, Bioengineering

Matthew O’Donnell

Professor, Bioengineering | (206) 465-2144

Our lab is developing molecular agents and systems for photoacoustic and ultrasonic molecular imaging. Also, we look at integrated therapeutics for molecular-level theransotics (i.e., integrated diangostics and therapy).

Professor, Materials Science & Engineering<br />Adjunct Professor, Physics

Fumio Ohuchi

Professor, Materials Science & Engineering
Adjunct Professor, Physics | 206 685-8272


Professor, Physics

Marjorie Olmstead

Professor, Physics | 206 685-3031

Prof. Marjorie Olmstead is on the faculty in the Condensed Matter Experiment group of the Department of Physics at the University of Washington, where she is Associate Chair of Physics for Undergraduate Affairs and Director of the Nanotechnology and Molecular Engineering Dual Title PhD Program.

Professor, Pediatrics, Division of Hematology/Oncology

James Olson

Professor, Pediatrics, Division of Hematology/Oncology | 206 667-7955


Professor, Chemical Engineering; Associate Director of Education, Molecular Engineering & Sciences Institute

René Overney

Professor, Chemical Engineering; Associate Director of Education, Molecular Engineering & Sciences Institute | 206-543-4353

Research in Overney’s Lab focuses on obtaining a fundamental understanding of material functionalities involving nano-confined complex molecular systems. We are particularly interested in i) identifying basic internal and external constraints that are responsible for “unique” material and transport properties, and ii) applying knowledge of molecular- and nano-constraints to material engineering in a rational fashion, with focus on the molecular building blocks, their subunits, and their temporal and spatial mobilities.

Professor, Microbiology

Matthew Parsek

Professor, Microbiology | 206 221-7871


Assistant Professor, Materials Science & Engineering

Peter Pauzauskie

Assistant Professor, Materials Science & Engineering | 206-543-2303

The Pauzauskie Lab focuses on the design, synthesis, and characterization of nanoscale optoelectronic materials with unique compositions and morphologies. The group’s ultimate goal is to help answer challenging questions in the biomedical, information technology, and renewable energy sectors by understanding how a material’s atomistic structure impacts subsequent properties and long-term performance. Of particular interest is the molecular surface functionalization of inorganic nanocrystals for engineering new theranostic nanomedicines.

Assistant Professor, Chemical Engineering

Jim Pfaendtner

Assistant Professor, Chemical Engineering | 206-616-8128

The overall focus of my research group is the use of theory, modeling and simulation to investigate fundamental and applied problems related to energy, materials and biophysics.

Professor, Bioengineering

Gerald Pollack

Professor, Bioengineering | 206-685-1880

Research in the Pollack Laboratory is focused on water science, water-based technologies, and water and cell biology. Water is said to have three phases – gas, liquid, and solid; but recent findings from our laboratory imply the presence of a surprisingly extensive fourth phase that occurs at interfaces. This finding may have unexpectedly profound implication for chemistry, physics and biology.

Associate Professor, Mechanical Engineering

Jonathan D. Posner

Associate Professor, Mechanical Engineering | 206-543-9834

The Posner Research Group’s focus is micro- and nano scale transport physics at the interface of chemistry, materials, & biology. Specific research topics include microfluidic and nanofluidic devices, colloidal science and interactions at fluid and solid interfaces, synthetic nanomotors, environmental and health impact of engineered nanomaterials, electrokinetics, low Reynolds number fluid instabilities, and fuel cells.

Associate Professor, Chemical Engineering

Lilo Pozzo

Associate Professor, Chemical Engineering | 206-685-3451

Our research focuses on understanding and controlling self-assembly processes in dispersed colloidal, polymeric and nanoparticle systems. This fundamental knowledge allows for manipulation of material properties for applications in solar energy, nanomedicine, separations and advanced coatings amongst others. We also develop in-situ neutron and x-ray scattering techniques to formulate structure-property relationships under realistic processing and use conditions.

Associate Professor, Bioengineering

Suzie Pun

Associate Professor, Bioengineering | 206-685-3488

Research in the Pun Group focuses on advancing macromolecule drug delivery technology by developing materials that overcome transport limitations in tissues and within cells. We are integrating techniques from engineering, chemistry, and cell biology to achieve this goal.

Professor, Microbiology

Lalita Ramakrishnan

Professor, Microbiology | 206 616-4286


Professor & UWEB Director, Bioengineering and Chemical Engineering

Buddy Ratner

Professor & UWEB Director, Bioengineering and Chemical Engineering | 206-685-1005

Medical devices and implants are engineered from specially designed materials, often referred to as biomaterials. Millions of devices and implants are used clinically in applications as diverse as blood vessel replacements, catheters, contact lenses, hip joints, ventricular assist devices and artificial kidneys. The biocompatibility of these prostheses is dictated by their surface properties and by the local mechanical environment they induce. In my research program, biomaterials are engineered to control biological interactions, synthesized, characterized and observed during interaction with biological systems.

Assistant Professor, Bioengineering

Daniel M. Ratner

Assistant Professor, Bioengineering | 206-685-2840

The Ratner Laboratory’s focus includes the development of synthetic and biophysical tools to analyze glycan-dependent interactions at the surface of cells, tissues, and biomaterials. Leveraging molecular engineering, carbohydrate chemistry, advanced surface modification and analysis, and label-free biosensing technologies, Professor Ratner aims to unravel the roles played by carbohydrates and glycoconjugates in biological systems and apply this knowledge to engineer new molecular diagnostics and therapeutics.

Professor, Physiology and Biophysics <br />Adjunct Professor, Physics

Fred Rieke

Professor, Physiology and Biophysics
Adjunct Professor, Physics | 206 616-6956


Associate Professor, Materials Science and Engineering

Marco Rolandi

Associate Professor, Materials Science and Engineering | 206 221-0309

Research in the Rolandi laboratories focuses on micro- and nano- biological and bionspired materials, their integration in biocompatible devices, and their translational applications. His work on bioprotonic transistors was highlighted in The New York Times, New Scientist, MRS 360, IEEE Spectrum, Materials Views, Engadget, Popular Science, and several other sites. He is also interested in visual communication in science and engineering and his essay on how to prepare scientific figures was the most downloaded article in Advanced Materials during the fall of 2011 (> 10,000 times). Follow the Rolandi Group on Twitter.

Professor, Materials Science & Engineering

Mehmet Sarikaya

Professor, Materials Science & Engineering | 206-543-0724

The initiator of the cross-disciplinary Molecular Biomimetics field, Sarikaya’s major interests lie in peptide-based materials and systems in which bio/nano interfaces are designed to integrate biological structures with diverse functions of engineered solid materials. Selected through combinatorial mutagenesis and designed by bioinformatics, the interdisciplinary Lab has developed the genetically engineered peptides for inorganics (GEPIs). GEPIs are building blocks in directed/targeted assembly of nanoparticles and functional biomolecules; tiny enzymes, in biomaterialization, e.g., healing teeth; molecular linkers and erectors sets in biofunctionalization of surfaces, a potential key utility in molecular technologies and nanomedicine.

Professor, Chemistry

Tomikazu Sasaki

Professor, Chemistry | 206 543-6590


Professor, Physics

Michael Schick

Professor, Physics | 206 543-9948


Boeing-Sutter Professor and Chair of Chemical Engineering, Materials Science & Engineering

Daniel Schwartz

Boeing-Sutter Professor and Chair of Chemical Engineering, Materials Science & Engineering | 206-543-2253

The formation and function of electrochemical materials and interfaces are critically affected by molecular adsorption and templating. Our group explores the use of engineered proteins as modifiers of nucleation and growth, as well as orchestrators of hierarchical structures. In separate efforts, we also explore innovative methods to convert waste materials, especially lignocellulosic feedstocks, into value added products.

Assistant Professor, Computer Science & Engineering and Electrical Engineering

Georg Seelig

Assistant Professor, Computer Science & Engineering and Electrical Engineering | 206-616-3885

We are interested in understanding how biological organisms process information using complex biochemical networks and how such networks can be engineered to program cellular behavior. The focus of our research is the identification of systematic design rules for the de novo construction of biological control circuits with DNA and RNA components. Our approach integrates the design of molecular circuitry in the test tube and in the cell with the investigation of existing biological pathways like the microRNA pathway. Engineered circuits and circuit elements are being applied to problems in disease diagnostics and therapy.

Research Professor, Human Photonics Laboratory (HPL)

Eric Seibel

Research Professor, Human Photonics Laboratory (HPL) | 206-616-1486

Professor, Physics

Gerald Seidler

Professor, Physics | 206-616-8746


Associate Professor, Mechanical Engineering

Amy Shen

Associate Professor, Mechanical Engineering | 206-221-0372

My research program develops novel approaches in microfluidics to address complex and interdisciplinary questions at the interface of biology, chemistry and engineering. In particular, we couple hydrodynamics of self assembly fluids and external fields for applications in biosensor, single cell analysis, molecule assays, and novel hierarchically structured materials synthesis

Assistant Professor, Mechanical Engineering

Nathan Sniadecki

Assistant Professor, Mechanical Engineering | 206-685-6591

Our lab investigates how cells are influenced by mechanical interactions at the micro and nanoscale. To pursue these goals, we are developing new tools – micro- and nano-devices, quantitative image analysis, and computational models – that we use to understand the underpinnings of biomechanics and mechanobiology. The greater impact of our work is to delineate how cell mechanics affect cardiovascular disease and cancer in order to catalyze new strategies for their treatment. By working at the intersection of mechanics and biology, we are increasing understanding of the theories of soft, active, and multifunctional materials.

Professor, Microbiology

Evgeni Sokurenko

Professor, Microbiology | 206 685-2162


Professor, Civil & Environmental Engineering

David Stahl

Professor, Civil & Environmental Engineering | 206-685-8502

Professor Stahl’s group studies microbial community structure and function in many different habitats, including aquatic systems, extreme environments, animal guts, the human mouth, and contaminated systems. Molecular engineering-related research interests include electron transfer systems sustaining microbial food webs, adaptive evolution of synthetic microbial communities, and biological catalysts for the oxidation of reduced nitrogen species.

Professor, Bioengineering; Director, Molecular Engineering & Sciences Institute

Patrick Stayton

Professor, Bioengineering; Director, Molecular Engineering & Sciences Institute | 206-685-8148

Our group is interested in elucidating the fundamental mechanisms of biomolecular recognition and applying the unique capabilities of biological molecules to biotechnologies. We would like to bridge the gap between understanding molecular structure-function relationships, and to be able to utilize proteins/peptides/DNA for in vivo drug therapies, bioseparations, diagnostics, and biomaterial development.

Professor Emeritus, Physics

Edward Stern

Professor Emeritus, Physics | 206 543-2023


Professor, Chemical Engineering<br />Adjunct Professor, Chemistry

Eric Stuve

Professor, Chemical Engineering
Adjunct Professor, Chemistry | 206 543-0156


Boeing-Pennell Professor, Mechanical Engineering

Minoru Taya

Boeing-Pennell Professor, Mechanical Engineering | 206-685-2850

In the area of molecular engineering, the Taya Group is interested in energy-harvesting based on thermoelectric semiconductors (both inorganics and organics), dye-sensitized solar cells, and electrochromic window with switchable dye molecules.

Associate Professor, Bioengineering

Wendy Thomas

Associate Professor, Bioengineering | 206-685-3300

The Thomas lab studies regulated adhesive proteins. While we study protein allostery in general, we are particularly interested in mechanical regulation. A main interest is in “catch bonds” that are activated to bind by tensile mechanical force. In particular, we study mechanical regulation of proteins involved in bacterial infection and thrombosis. We also engineer smart regulated adhesives. In our “actibodies” project, we design activatable, antibody-like recognition proteins. In our “biocatch adhesion” project, we integrate catch bonds into adhesives that will allow medical robots to catch human tissue under force, and then release it, like nanoscale locking seatbelts.

Associate Professor, Microbiology

Beth Traxler

Associate Professor, Microbiology | 206-543-5485

The research in Dr. Traxler’s laboratory focuses on the genetic and biochemical analysis of protein folding and function. Recently, the lab has been involved in the development of materials for nanotechnology. Different proteins characterized in the lab’s genetic analyses are being engineered by the addition of polypeptide sequences that bind to various inorganic compounds. Those inorganic compounds can be arranged in predictable structures, based on the self-assembly properties of the substrate proteins. Examples include using different DNA binding proteins to organize inorganic nanoparticles along a DNA guide.

Professor, Bioengineering and Internal Medicine

Pedro Verdugo

Professor, Bioengineering and Internal Medicine | 206 685-2003


Professor Emeritus, Physics

Oscar Vilches

Professor Emeritus, Physics | 206 543-2393


Assistant Professor, Biological Structure

Liguo Wang

Assistant Professor, Biological Structure | 206-616-7894

We are interested in probing the structures of membrane proteins and their complexes, and understanding the molecular basis of their biological functions. We have developed a novel and general method, called “random spherically constrained” (RSC) single-particle electron cryomicroscopy (cryo-EM), to study membrane protein structures in membrane environments. This method does not rely on crystallization, and it can be, in principle, applied to any membrane protein. It not only preserves the membrane protein’s integrity and native conformation, but also enables access to biologically interesting states.

Assistant Professor, Bioengineering

Kim Woodrow

Assistant Professor, Bioengineering | 206-685-6831

The Woodrow Laboratory is focused on the applications of engineered biomaterials in mucosal infections and mucosal immunity. Our long-term goals are to design and build multifunctional materials that will: (1) lead to novel preventative strategies against mucosal infections, (2) program protective immune responses at mucosal sites of pathogen entry, and (3) facilitate studies of mucosal infections and mucosal immunity in health and disease. These scientific goals are addressed from the perspective of fundamental science, technology development, and translational research.

Professor, Physiology and Biophysics

Linda Wordeman

Professor, Physiology and Biophysics | 206-543-4135

We use high resolution live imaging and total internal reflection microscopy to study molecular motors and their role in mitotic spindle assembly and chromosome movement. At the single molecule level we evaluate motor control of dynamic microtubule assembly and disassembly. Of special interest are the forces driving oscillatory chromosome movement, mitotic spindle assembly and mitotic spindle orientation in live cells. Finally, we are interested in the advection of motors in live cells. In other words, how the kinetic parameters of single microtubule motors influences their translocation, distribution and function in cells and we are interested in modeling this activity in silico.

Assistant Professor, Physics and Material Science & Engineering

Xiaodong Xu

Assistant Professor, Physics and Material Science & Engineering | 206 543-8444

The goal of our research program is to combine the optical spectroscopy, transport measurements and nano-device fabrication techniques, to understand the electronic and optical properties of quantum confined nanostructure, develop the probe and control techniques of charge and spin, and the quantum physics in these confined nanostructure, push the unification front of material synthesis, device fabrication, physics measurements, understand the physics arising from this process, and push the knowledge and techniques we learn from these study back to the application frontier, such as optoelectronic, spintronics, optomechanics and plasmonics.

Professor, Bioengineering

Paul Yager

Professor, Bioengineering | 206 543-6126

Professor Yager’s research interests lie in the areas of: microfluidic devices for chemical and biochemical measurement., development of point-of-care diagnostic instruments, microfabrication technologies for microfluidics, and development of microfluidic-specific methods of analysis of biological samples.

Kyocera Associate Professor, Materials Science & Engineering

Jihui Yang

Kyocera Associate Professor, Materials Science & Engineering | 206-543-7090

The Yang Research Group uses various experimental and theoretical techniques to study materials of great fundamental and application interest. Current research focuses on the design, synthesis, testing, and understanding of advanced thermoelectric materials and Li-ion battery materials for energy conversion and storage, which include electron and phonon transport of thermoelectric materials, thermodynamic stability, atomistic structural arrangement, electronic band structure, and lattice dynamics of nanocomposites, and degradation mechanisms of advanced Li-ion battery materials.

Research Associate Professor, Chemical Engineering

Qiuming Yu

Research Associate Professor, Chemical Engineering | 206-543-4807

The Yu Group focuses on two research areas: solar energy and biosensing. We synthesize new semiconductor nanomaterials for hybrid photovoltaics and utilize plasmonic nanostructures for enhancing light harvesting and conversion. We develop plasmonic nanostructures for surface-enhanced Raman spectroscopy (SERS) and new sensing platforms for chemical and biological sensing and detection.

Assistant Professor, Chemistry

Jesse Zalatan

Assistant Professor, Chemistry | 206-543-1670

The Zalatan research group seeks to understand how biological signaling networks are organized at the molecular level to process, integrate, and coordinate signals. We focus on individual reaction steps at key decision points in cell signaling pathways, using a wide range of tools from biochemistry, enzymology, and synthetic biology. This approach allows us to draw connections between molecular events and cellular behaviors, providing a framework to identify new drug targets and to engineer synthetic pathways for cell-based therapeutics and devices.

Professor, Materials Science & Engineering

Miqin Zhang

Professor, Materials Science & Engineering | (206) 616-9356


Research Assistant Professor, Radiology

Shanrong Zhang

Research Assistant Professor, Radiology | (206) 598-5176